378 research outputs found

    Image Ellipticity from Atmospheric Aberrations

    Get PDF
    We investigate the ellipticity of the point-spread function (PSF) produced by imaging an unresolved source with a telescope, subject to the effects of atmospheric turbulence. It is important to quantify these effects in order to understand the errors in shape measurements of astronomical objects, such as those used to study weak gravitational lensing of field galaxies. The PSF modeling involves either a Fourier transform of the phase information in the pupil plane or a ray-tracing approach, which has the advantage of requiring fewer computations than the Fourier transform. Using a standard method, involving the Gaussian weighted second moments of intensity, we then calculate the ellipticity of the PSF patterns. We find significant ellipticity for the instantaneous patterns (up to more than 10%). Longer exposures, which we approximate by combining multiple (N) images from uncorrelated atmospheric realizations, yield progressively lower ellipticity (as 1 / sqrt(N)). We also verify that the measured ellipticity does not depend on the sampling interval in the pupil plane using the Fourier method. However, we find that the results using the ray-tracing technique do depend on the pupil sampling interval, representing a gradual breakdown of the geometric approximation at high spatial frequencies. Therefore, ray tracing is generally not an accurate method of modeling PSF ellipticity induced by atmospheric turbulence unless some additional procedure is implemented to correctly account for the effects of high spatial frequency aberrations. The Fourier method, however, can be used directly to accurately model PSF ellipticity, which can give insights into errors in the statistics of field galaxy shapes used in studies of weak gravitational lensing.Comment: 9 pages, 5 color figures (some reduced in size). Accepted for publication in the Astrophysical Journa

    A Search for Scalar Chameleons with ADMX

    Get PDF
    Scalar fields with a "chameleon" property, in which the effective particle mass is a function of its local environment, are common to many theories beyond the standard model and could be responsible for dark energy. If these fields couple weakly to the photon, they could be detectable through the "afterglow" effect of photon-chameleon-photon transitions. The ADMX experiment was used in the first chameleon search with a microwave cavity to set a new limit on scalar chameleon-photon coupling excluding values between 2*10^9 and 5*10^14 for effective chameleon masses between 1.9510 and 1.9525 micro-eV.Comment: 4 pages, 3 figure

    Dilaton as a Dark Matter Candidate and its Detection

    Full text link
    Assuming that the dilaton is the dark matter of the universe, we propose an experiment to detect the relic dilaton using the electromagnetic resonant cavity, based on the dilaton-photon conversion in strong electromagnetic background. We calculate the density of the relic dilaton, and estimate the dilaton mass for which the dilaton becomes the dark matter of the universe. With this we calculate the dilaton detection power in the resonant cavity, and compare it with the axion detection power in similar resonant cavity experiment.Comment: 23 pages, 2 figure

    A SQUID-based microwave cavity search for dark-matter axions

    Full text link
    Axions in the micro eV mass range are a plausible cold dark matter candidate and may be detected by their conversion into microwave photons in a resonant cavity immersed in a static magnetic field. The first result from such an axion search using a superconducting first-stage amplifier (SQUID) is reported. The SQUID amplifier, replacing a conventional GaAs field-effect transistor amplifier, successfully reached axion-photon coupling sensitivity in the band set by present axion models and sets the stage for a definitive axion search utilizing near quantum-limited SQUID amplifiers.Comment: 4 pages, 5 figures, submitted to PR

    Move of a large but delicate apparatus on a trailer with air-ride suspension

    Get PDF
    When valuable delicate goods are shipped by truck, attention must be paid to vibrations that may cause damage. We present a case study of moving an extremely delicate 6230-kg superconducting magnet, immersed in liquid nitrogen, from Livermore, CA to Seattle, WA showing the steps of fatigue analysis of the load, a test move, and acceleration monitoring of the final move to ensure a successful damage-free transport

    Superdeformation in 198^{198}Po

    Full text link
    The 174^{174}Yb(29^{29}Si,5n) reaction at 148 MeV with thin targets was used to populate high-angular momentum states in 198^{198}Po. Resulting γ\gamma rays were observed with Gammasphere. A weakly-populated superdeformed band of 10 γ\gamma-ray transitions was found and has been assigned to 198^{198}Po. This is the first observation of a SD band in the A190A \approx 190 region in a nucleus with Z>83Z > 83. The J(2){\cal J}^{(2)} of the new band is very similar to those of the yrast SD bands in 194^{194}Hg and 196^{196}Pb. The intensity profile suggests that this band is populated through states close to where the SD band crosses the yrast line and the angular momentum at which the fission process dominates.Comment: 10 pages, revtex, 2 figs. available on request, submitted to Phys. Rev. C. (Rapid Communications

    Properties of Ellipticity Correlation with Atmospheric Structure from Gemini South

    Get PDF
    Cosmic shear holds great promise for a precision independent measurement of Ωm\Omega\rm_m, the mass density of the universe relative to the critical density. The signal is expected to be weak, so a thorough understanding of systematic effects is crucial. An important systematic effect is the atmosphere: shear power introduced by the atmosphere is larger than the expected signal. Algorithms exist to extract the cosmic shear from the atmospheric component, though a measure of their success applied to a range of seeing conditions is lacking. To gain insight into atmospheric shear, Gemini South imaging in conjunction with ground condition and satellite wind data were obtained. We find that under good seeing conditions Point-Spread-Function (PSF) correlations persist well beyond the separation typical of high-latitude stars. Under these conditions, ellipticity residuals based on a simple PSF interpolation can be reduced to within a factor of a few of the shot-noise induced ellipticity floor. We also find that the ellipticity residuals are highly correlated with wind direction. Finally, we correct stellar shapes using a more sophisticated procedure and generate shear statistics from stars. Under all seeing conditions in our data set the residual correlations lie everywhere below the target signal level. For good seeing we find that the systematic error attributable to atmospheric turbulence is comparable in magnitude to the statistical error (shape noise) over angular scales relevant to present lensing surveys.Comment: To appear in ApJ April 10, 2007, 659

    Axion-Higgs Unification

    Get PDF
    In theories with no fundamental scalars, one gauge group can become strong at a large scale Lambda and spontaneously break a global symmetry, producing the Higgs and the axion as composite pseudo-Nambu-Goldstone bosons. We show how KSVZ and DFSZ axion models can be naturally realised. The assumption Lambda around 10^{11} GeV is phenomenologically favoured because: a) The axion solves the QCD theta problem and provides the observed DM abundance; b) The observed Higgs mass is generated via RGE effects from a small Higgs quartic coupling at the compositeness scale, provided that the Higgs mass term is fine-tuned to be of electroweak size; c) Lepton, quark as well as neutrino masses can be obtained from four-fermion operators at the compositeness scale. d) The extra fermions can unify the gauge couplings.Comment: 19 pages. Refs. added and eq. 3.6 fixe
    corecore